
Exercise 1

Let f : R → R be the function defined by f(x) = exp(− 1
x) if x > 0, and

f(x) = 0 if x ≤ 0.

(1) Is f continuous at 0? Is it right differentiable at 0? Is it left differ-
entiable at 0?

(2) Show that for every integer n ≥ 1, there exists a polynomial Pn(x)

such that f (n)(x) = Pn(x)
x2n exp(− 1

x), and find a recurrence relation
for Pn.

(3) Show that f is of class C∞, namely that it has a derivative of any
order. Can it be expressed as a series f(x) =

∑
bnx

n of positive
radius of convergence at the neighborhood of 0?

(4) Show that there exists a function g : R → R with the following
properties:
• g is of class C∞,
• g(x) = 0 if |x| ≥ 1,
• g(x) > 0 if |x| < 1.

Exercise 2

Let n be a positive integer number. Denote by E the vector space Rn[X]
of real polynomials of degree ≤ n in one variable, and equip E with the
scalar product

〈P,Q〉 =

∫ 1

0
P (t)Q(t)dt.

The norm of P ∈ E is denoted by ‖P‖. Recall that ‖P‖2 = 〈P, P 〉.
Denote by F ⊂ E the subspace generated by X, X2, . . ., Xn. Our

purpose is to determine the distance d = d(1, F ), which is by definition, the
infimum of ‖1− P‖ for P ∈ F :

d(1, F ) = inf{‖1− P‖ | P ∈ F}.

Put

S(X) =
(X − 1) . . . (X − n)

(X + 1) . . . (X + n + 1)
.

The partial fraction decomposition of S is of the form

S(X) =
a0

x + 1
+ . . . +

an
X + n + 1

,

where a0, . . ., an are real numbers.

(1) Compute a0.
(2) Prove that the polynomial

T (X) = anX
n + . . . + a0

is orthogonal to F , namely 〈T, P 〉 = 0 for every P ∈ F .
(3) Describe F⊥, the set of polynomials orthogonal to F .
(4) Show that d2 = 1

a20
‖T‖2.

(5) Compute d.
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Exercise 3

A partition (a1, a2, . . . , as) of a positive integer n ≥ 1 is a finite decreasing
sequence of integers a1 ≥ a2 ≥ · · · ≥ as > 0, called summands, such that
a1 + · · · + as = n. The number of partitions of n is denoted by p(n). For
example, the partitions of 3 are (3); (2, 1); (1, 1, 1), and so p(3) = 3.

(1) Give the partitions of 4 and 5; what is the value of p(4) and p(5)?

(2) Show that p(n) is also the number of sequences of non-negative
integers (xk)∞k=1 which verify

∑∞
k=1 kxk = n.

(3) Let 0 < t < 1 be a real number. Show that the sequence u1, u2, . . . ,
defined by

∀m ≥ 1 , um :=
m∏
k=1

1

1− tk

is strictly increasing and convergent.

Define f(t) :=
∏∞

k=1
1

1−tk .

(4) Prove that f(t) = 1 +
∑∞

n=1 p(n)tn.

Let s,m ≥ 1 be positive integers. For an integer n ≥ 1, denote by
qs,m(n) the number of partitions of n into s distinct summands such that
the maximum of the summands is m. In other words, qs,m is the number
of partitions of n of the form (a1, a2, . . . , as) with a1 = m > a2 > · · · > as.
For example, q1,3(3) = q2,4(6) = 1.

Denote by q(n) =
∑∞

s=1

∑∞
m=1 qs,m(n) the number of partitions of n into

distinct summands.

(5) What are the values of q(7) and q(8)?

(6) Show that qs,m(n) is also the number of partitions of n into m sum-
mands of the form (b1, . . . , bm) such that b1 = s and such that
all the integers 1, . . . , s appear at least once among the summands
b1, . . . , bm.

(7) Deduce that q(n) is also the number of partitions of n such that if
an integer k ≥ 2 appears among the summands, then k− 1 appears
as well.

(8) Prove that q(n) is also the number of partitions of n into odd sum-
mands, i.e., the number of partitions of n of the form (a1, . . . , as),
for an integer s ≥ 1, such that a1, . . . , as are odd numbers.


