Exercise 1

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=\exp \left(-\frac{1}{x}\right)$ if $x>0$, and $f(x)=0$ if $x \leq 0$.
(1) Is f continuous at 0 ? Is it right differentiable at 0 ? Is it left differentiable at 0 ?
(2) Show that for every integer $n \geq 1$, there exists a polynomial $P_{n}(x)$ such that $f^{(n)}(x)=\frac{P_{n}(x)}{x^{2 n}} \exp \left(-\frac{1}{x}\right)$, and find a recurrence relation for P_{n}.
(3) Show that f is of class C^{∞}, namely that it has a derivative of any order. Can it be expressed as a series $f(x)=\sum b_{n} x^{n}$ of positive radius of convergence at the neighborhood of 0 ?
(4) Show that there exists a function $g: \mathbb{R} \rightarrow \mathbb{R}$ with the following properties:

- g is of class C^{∞},
- $g(x)=0$ if $|x| \geq 1$,
- $g(x)>0$ if $|x|<1$.

Exercise 2

Let n be a positive integer number. Denote by E the vector space $\mathbb{R}_{n}[X]$ of real polynomials of degree $\leq n$ in one variable, and equip E with the scalar product

$$
\langle P, Q\rangle=\int_{0}^{1} P(t) Q(t) d t
$$

The norm of $P \in E$ is denoted by $\|P\|$. Recall that $\|P\|^{2}=\langle P, P\rangle$.
Denote by $F \subset E$ the subspace generated by X, X^{2}, \ldots, X^{n}. Our purpose is to determine the distance $d=d(1, F)$, which is by definition, the infimum of $\|1-P\|$ for $P \in F$:

$$
d(1, F)=\inf \{\|1-P\| \mid P \in F\}
$$

Put

$$
S(X)=\frac{(X-1) \ldots(X-n)}{(X+1) \ldots(X+n+1)}
$$

The partial fraction decomposition of S is of the form

$$
S(X)=\frac{a_{0}}{x+1}+\ldots+\frac{a_{n}}{X+n+1}
$$

where a_{0}, \ldots, a_{n} are real numbers.
(1) Compute a_{0}.
(2) Prove that the polynomial

$$
T(X)=a_{n} X^{n}+\ldots+a_{0}
$$

is orthogonal to F, namely $\langle T, P\rangle=0$ for every $P \in F$.
(3) Describe F^{\perp}, the set of polynomials orthogonal to F.
(4) Show that $d^{2}=\frac{1}{a_{0}^{2}}\|T\|^{2}$.
(5) Compute d.

Exercise 3

A partition $\left(a_{1}, a_{2}, \ldots, a_{s}\right)$ of a positive integer $n \geq 1$ is a finite decreasing sequence of integers $a_{1} \geq a_{2} \geq \cdots \geq a_{s}>0$, called summands, such that $a_{1}+\cdots+a_{s}=n$. The number of partitions of n is denoted by $p(n)$. For example, the partitions of 3 are $(3) ;(2,1) ;(1,1,1)$, and so $p(3)=3$.
(1) Give the partitions of 4 and 5 ; what is the value of $p(4)$ and $p(5)$?
(2) Show that $p(n)$ is also the number of sequences of non-negative integers $\left(x_{k}\right)_{k=1}^{\infty}$ which verify $\sum_{k=1}^{\infty} k x_{k}=n$.
(3) Let $0<t<1$ be a real number. Show that the sequence u_{1}, u_{2}, \ldots, defined by

$$
\forall m \geq 1, \quad u_{m}:=\prod_{k=1}^{m} \frac{1}{1-t^{k}}
$$

is strictly increasing and convergent.

Define $f(t):=\prod_{k=1}^{\infty} \frac{1}{1-t^{k}}$.
(4) Prove that $f(t)=1+\sum_{n=1}^{\infty} p(n) t^{n}$.

Let $s, m \geq 1$ be positive integers. For an integer $n \geq 1$, denote by $q_{s, m}(n)$ the number of partitions of n into s distinct summands such that the maximum of the summands is m. In other words, $q_{s, m}$ is the number of partitions of n of the form $\left(a_{1}, a_{2}, \ldots, a_{s}\right)$ with $a_{1}=m>a_{2}>\cdots>a_{s}$. For example, $q_{1,3}(3)=q_{2,4}(6)=1$.

Denote by $q(n)=\sum_{s=1}^{\infty} \sum_{m=1}^{\infty} q_{s, m}(n)$ the number of partitions of n into distinct summands.
(5) What are the values of $q(7)$ and $q(8)$?
(6) Show that $q_{s, m}(n)$ is also the number of partitions of n into m summands of the form $\left(b_{1}, \ldots, b_{m}\right)$ such that $b_{1}=s$ and such that all the integers $1, \ldots, s$ appear at least once among the summands b_{1}, \ldots, b_{m}.
(7) Deduce that $q(n)$ is also the number of partitions of n such that if an integer $k \geq 2$ appears among the summands, then $k-1$ appears as well.
(8) Prove that $q(n)$ is also the number of partitions of n into odd summands, i.e., the number of partitions of n of the form $\left(a_{1}, \ldots, a_{s}\right)$, for an integer $s \geq 1$, such that a_{1}, \ldots, a_{s} are odd numbers.

